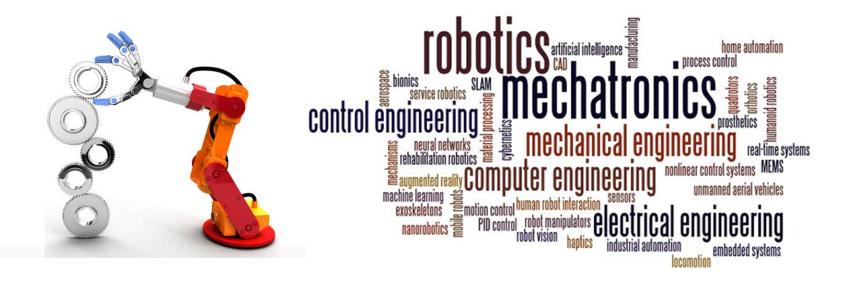


Relatore: prof. Alessandro Gasparetto

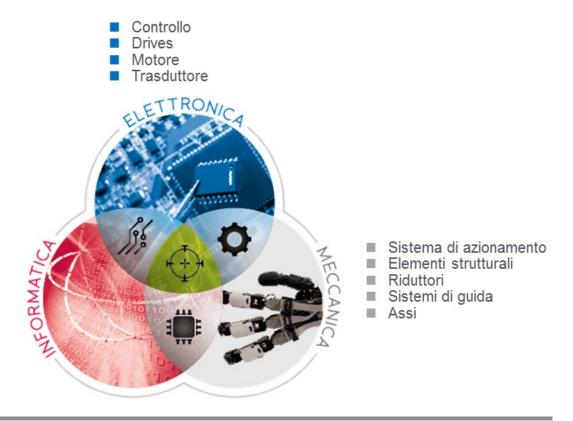
31 marzo 2017, ore 16.00



MECCATRONICA = MECCANICA + ELETTRONICA (+ INFORMATICA)

- Termine coniato nel 1960 dalla Japan's Yaskawa Electric Company per identificare quei sistemi meccanici in cui le performance e le funzionalità sono determinate dalla sinergia della meccanica, dell'elettronica e dell'informatica
- > Un robot industriale può essere considerato un primo esempio di sistema meccatronico: include elementi di elettronica, meccanica e informatica tutti fondamentali per il funzionamento complessivo

Meccatronica come scienza multidisciplinare


Al giorno d'oggi, all'aumentare di complessità dei sistemi tecnologici, la meccatronica è diventata un campo interdisciplinare della scienza che include una combinazione di:

- ingegneria meccanica,
- elettronica,
- informatica

ma anche:

- robotica
- telecomunicazioni
- sistemi di controllo
- automazione

Meccatronica come scienza multidisciplinare: campi di applicazione AUTOMOTIVE AEROSPACE MEDICE Digital Control Control **Electronics** Systems Electronic Computers **MECHATRONICS Systems** Mechanical Electro-CAD mechanics Mechanical **Systems** CONSUMER PRODUCTS

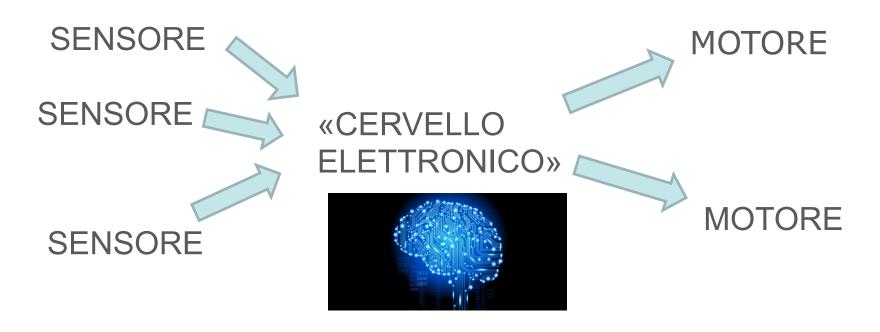
Meccatronica come scienza multidisciplinare: campi di applicazione

- Sistemi produttivi e automotive
- Robotica
- Servo-meccanismi
- Sistemi di visione
- Sensoristica
- Sistemi di controllo
- Macchinari industriali
- Sistemi di diagnosi medica
- Computer integrated manufacturing systems

- Microcontrollori/PLC
- Azionamenti elettrici
- Applicazioni per smartphone
- Macchine utensili
- Conversione dell'energia
- Sistemi di comunicazione
- Industria aerospaziale
- Trasporti (terrestre, navale, marino)
- Componenti elettronici
- ... e molto altro!

Opportunità fornite dalla Meccatronica:

- Estendere le funzioni convenzionali dei sistemi
- Aggiungere nuove funzioni operative
- Realizzare strutture meccaniche più affidabili, leggere, compatte
- Migliorare l'interazione uomo macchina
- Ridurre i costi a parità di prestazioni
- Migliorare le condizioni e la sicurezza sul lavoro
- Migliorare la qualità del prodotto e la produttività stessa
- Tutelare l'ambiente e razionalizzare i consumi energetici
- Sfruttare al meglio le fonti alternative e le risorse rinnovabili



Dalla Meccanica alla Meccatronica - I

Molti sistemi che un tempo erano semplicemente «meccanici» ora sono «meccatronici» in quanto sono controllati da un «cervello» elettronico con le seguenti funzioni:

- > Acquisire dati dai sensori
- > Elaborare i dati
- Comandare i motori e gli attuatori in modo «intelligente»

Dalla Meccanica alla Meccatronica - II

Meccanizzazione

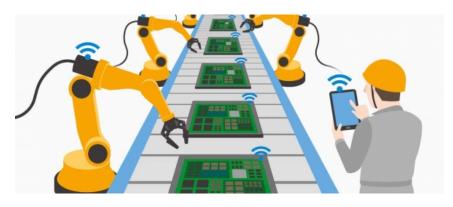
Elettronica

Sistemi Elettromeccanici

MECCATRONICA

Dalla Meccanica alla Meccatronica - III

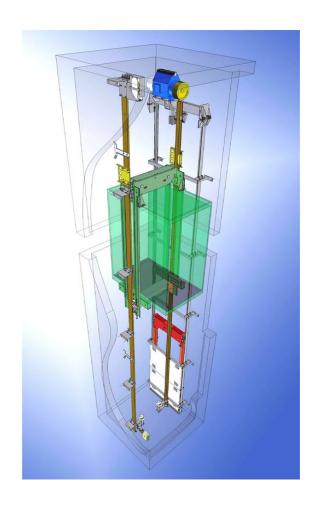
- > Fino a inizio 1900: sistemi di movimentazione puramente meccanici (turbine a vapore, motori a combustione interna 1860)
- > 1910-20: inizio dell'impiego di motori elettrici nei sistemi meccanici (macchine utensili, pompe)
- > 1935: diffusione di sistemi meccanici parzialmente automatizzati
- 1955: sistemi meccanici con controllo elettronico analogico o sequenziale, inizio dello sviluppo di calcolatori digitali
- > 1975: sistemi meccanici con controllo digitale, diffusione di microcalcolatori


Dalla Meccanica alla Meccatronica - IV

- > 1975: diffusione di macchine utensili, robot industriali, dispositivi di largo consumo dotati di sistemi di automazione
- > Anni 1990: sviluppo di sistemi meccatronici, integrazione della meccanica e dell'elettronica, sistemi integrati, diffusione di nuove funzionalità date da software, sinergia di tecnologie diverse
- Anni 2000: meccatronica avanzata, diffusione di robot umanoidi, sistemi di interazione uomo – macchina sempre più performanti, robot autonomi, robot collaborativi
- > Anni 2010: Industria 4.0 e smart factory, integrazione di sistemi meccatronici e cibernetici nella produzione industriale

La Meccatronica e Industria 4.0

- La meccatronica è parte integrante della quarta rivoluzione industriale
- Industria 4.0 e la fabbrica intelligente vedono il diffuso utilizzo di sistemi meccatronici avanzati a supporto e ottimizzazione della produzione industriale



Esempio di sistema meccatronico: l'ascensore

- > Un ascensore può considerarsi un sistema meccatronico?
- Primi modelli di ascensore: una specie di carrucole evolute azionate tramite forza umana e/o animale
- > Ascensori moderni:
- sistema di controllo elettronico dell'accelerazione
- sistema di auto-diagnosi e sicurezza elettronica
- sistema di ottimizzazione del percorso e delle fermate

Meccatronica nel settore Automotive - I

- > Un elegante esempio del ruolo della meccatronica nello sviluppo dei sistemi tecnologicamente avanzati è offerto dall'ambiente automobilistico.
- Nel corso degli ultimi trent'anni un numero sempre più considerevole di componenti elettroniche sono state integrate.

Ad esempio:

- L'accensione della miscela nei cilindri, un tempo effettuata per mezzo dell'albero di distribuzione, è oggi realizzata da un sistema elettronico che fa scoccare la scintilla all'istante opportuno.
- > Il carburatore è stato sostituito dalla iniezione elettronica, che ha ottimizzato l'efficienza del motore e i consumi di carburante.

Meccatronica nel settore Automotive - II

Non solo evoluzione dei sistemi esistenti ma anche innovazione, ad esempio:

- Sistema per il controllo elettronico della frenata (Automatic Braking System, ABS), in grado di mettere in relazione le velocità di rotazione degli pneumatici con l'accelerazione rilevata da sensori a bordo, e quindi in grado di modulare la pressione del circuito idraulico dei freni in maniera da evitare il bloccaggio delle ruote
- Sistema per il controllo elettronico della accelerazione (Traction Control System, TCS), che regola l'iniezione elettronica per evitare lo slittamento delle ruote durante fasi di accelerazione troppo spinta.

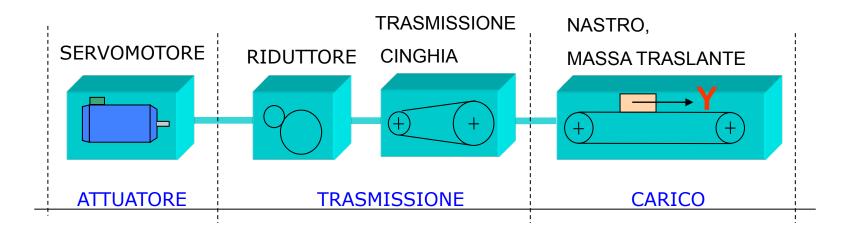
Meccatronica in ambito aeronautico

- > Necessità di tenere sotto controllo ogni operazione
- > Precisione assoluta nelle manovre
- Sicurezza e affidabilità
- > Prestazioni adeguate alla richiesta
- > Flessibilità di adattamento a qualsiasi variazione delle condizioni operative
- > Capacità di monitoraggio e riconfigurazione

...tutto questo sarebbe impossibile semza una completa integrazione di meccanica, elettronica, sistemi informatici e di controllo!

Meccatronica nelle macchine automatiche - I

- > Tradizionalmente le macchine automatiche compiono le loro azioni di trasformazione sul prodotto attuando una sequenza di movimenti ripetibile, chiamata ciclo di funzionamento. I movimenti sono generati da organi meccanici che insieme formano la cosiddetta «catena cinematica»:
 - Alberi, trasmissioni, catene, cinghie, ingranaggi, leve, camme, intermittori, riduttori...
- La fonte primaria dell'energia meccanica è il motore principale (elettrico o di altro tipo)
- L'utilizzo di un motore principale porta alla progettazione di macchine pesanti e molto complesse per la necessità di portare il movimento dal motore principale a dove serve realmente (ad esempio, a contatto con il prodotto)



Meccatronica nelle macchine automatiche - II

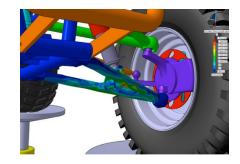
- > A partire dagli anni '80/'90 l'elettronica ha consentito di poter controllare con efficacia la posizione e la dinamica dei motori. Si sono diffusi motori ad alta efficienza, alta dinamica e costo ragionevole (brushless o servomotori).
- La nascita della meccatronica ha quindi rimosso le catene cinematiche pesanti che sono state sostituite da servomotori situati direttamente dove serve il movimento.
- Il comando ed il controllo elettronico del motore consente di effettuare il movimento desiderato. La sincronizzazione di tutti i motori ora è elettronica e non più meccanica

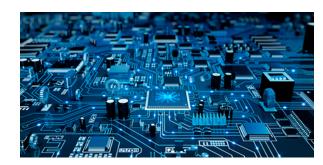
Approccio meccatronico: una nuova filosofia di progettazione

- > La capacità di essere competitivi sul mercato per un produttore proviene dalla <u>SINERGIA</u> di tutte le competenze presenti in Azienda
- > Non si deve procedere più a «compartimenti stagni» ma secondo un'approccio di condivisione
- Tutti gli aspetti utili alla realizzazione del prodotto devono essere tenuti in considerazione simultaneamente
- > Da qui si sviluppa il concetto di Concurrent Engineering (approccio alla progettazione integrata di un prodotto e del relativo processo produttivo)

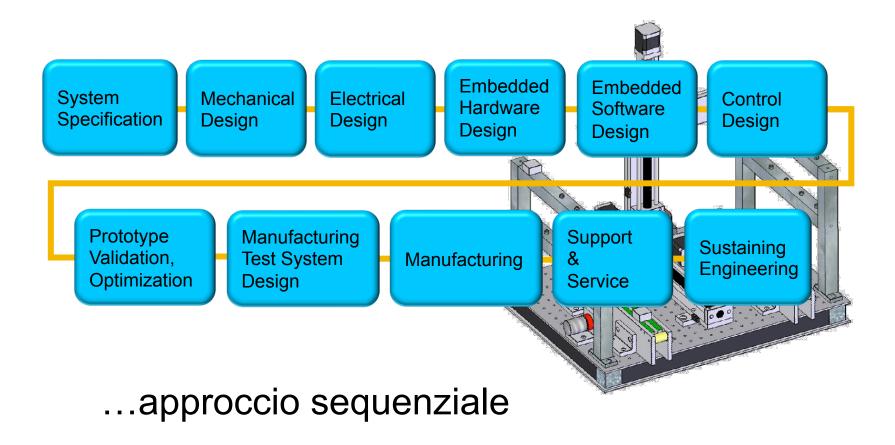
L'approccio meccatronico si applica a:

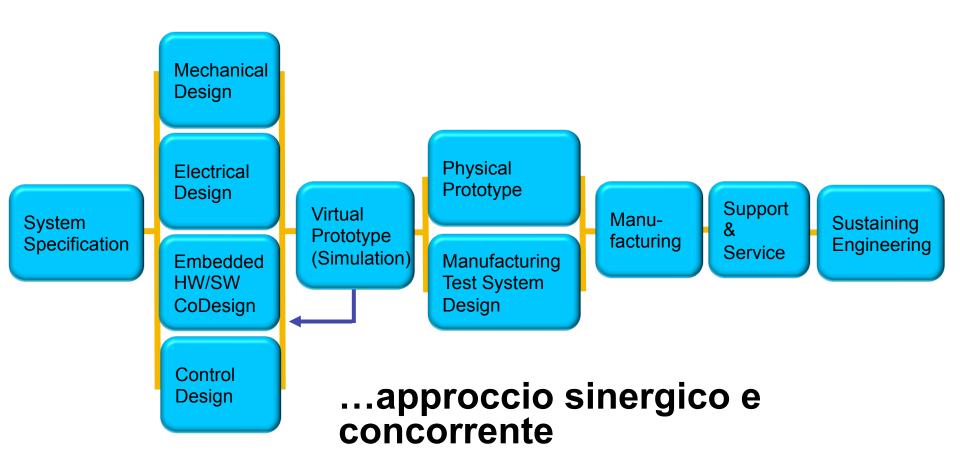
Sistemi


Sotto-Sistemi



Microsistemi





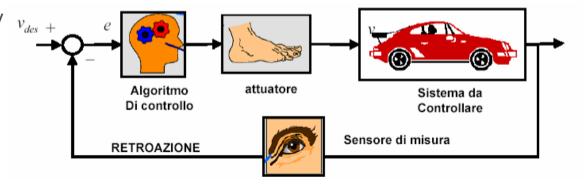
Approccio tradizionale alla progettazione

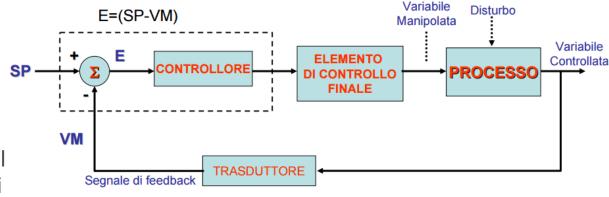
Approccio meccatronico alla progettazione

Per conseguire gli obiettivi di controllo, precisione, sicurezza, prestazioni occorre:

- Un'ottima conoscenza del sistema da progettare, del suo funzionamento nonché dei suoi punti critici
- > L'individuazione delle variabili che caratterizzano il processo stesso
- La formulazione di un modello matematico che descriva il sistema in modo completo e predica in modo affidabile il suo comportamento e la sua evoluzione nel tempo
- > Una visione omnicomprensiva e non parziale del sistema in esame

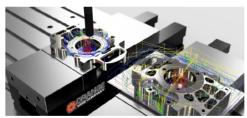
Inoltre occorre:


- > Individuare i flussi di energia e potenza in gioco
- Identificare sorgenti, localizzare perdite e dissipazioni
- > Conoscere i meccanismi e le modalità di conversione dell'energia
- Prevedere un eventuale sistema di controllo della conversione di energia (Energy Harvesting)
- > Disporre di un flusso di informazione distribuita nel sistema
- Misurare grandezze fisiche significative per mezzo di sensori che permettono una diagnosi e fungono da dispositivi di allarme



Dalla misura al controllo

- L'importanza di sensori/ trasduttori in meccatronica: semplice esempio di sistema di controllo in anello chiuso
- E' possibile controllare solo se si riesce a misurare!
- I compiti svolti dal «cervello umano» vengono attribuiti a un controllore che utilizza l'errore tra segnale di riferimento e variabile misurata (da sensori/ trasduttori) per agire sul processo (sugli attuatori del sistema)


Eccellenza in meccatronica in Friuli Venezia Giulia: LAMA Laboratorio di Meccatronica Avanzata

- Centro tecnologico internazionale d'eccellenza per l'innovazione di prodotto e processo in ambito industriale (settori biomedicale, aerospaziale, automobilistico, meccanico)
- Progettazione, innovazione e produzione di componenti meccanici, attrezzature e sistemi meccatronici avanzati
- Tecnologie all'avanguardia come stampa 3D di componenti metallici, robotica collaborativa e strumenti della fabbrica digitale

Selective Laser Melting - Stampa 3D di componenti metallici

Ingegneria virtuale

Robotica avanzata

Fabbrica digitale

Conclusioni

- Meccatronica come fusione tra meccanica, elettronica, informatica e controllo
- > Una «cultura» meccatronica, basata sull' « approccio meccatronico» favorisce soluzioni sinergiche più efficienti e performanti
- Occorre una visione globale del sistema, del problema tecnico e delle possibili soluzioni per raggiungere gli obiettivi di riduzione dei costi, precisione, sicurezza e affidabilità

Grazie per l'attenzione

alessandro.gasparetto@uniud.it